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Problem 1. Show that if a, b, ¢ are positive real numbers, then
a’ b* ¢
F+C—2+¥+S(ab+bc+ca) >6(a’ +b* +c?).

Proof. Without loss of generality, assume that ¢ =min{a, b, c}. There are two cases:

1. Case a>b=>c. Write the inequality as
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and
X+ Y2+ 25 —xy—yz—2x=(X* + y* = 2xy) + (2° + Xy — yz=17X)
=(x=y)* +(x= 2)(y—2).
Therefore, the above inequality can be written in the following forms (choosing
(x,y,2)=(a,b,c) and (x,y,z)=(b,c,a), respectively)
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Combining this with the obvious inequality (a—c)(b—c) >0, we get
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On the other hand, it is clear that
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From (3) and (4), we can see that (1) holds and so the original inequality
Is proved in this case.
e If a+c>2b, we will consider two cases.
o Case a>2b. In this case, we have
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and since (a—b)(a—c) >0, it follows that
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Moreover, one can easily check that
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So (2) holds or the original inequalityis proved.
o Case 2b>a. Since a+c>2b, we have c>2b-a >0 and hence
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From this and the obvious inequality (a—b)(a—c) >0, we also get (5).

And by combining (5) and the obvious inequality (6), we obtain the
desired result.

. Case b>a=c. In this case, we have
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5 +C—2 +=2 ra + o + Py (the readers can easily check this).
Therefore, it suffices to prove that
b* ¢* a*
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Setting @'=Db,b’'=a and ¢’ =c, the above inequality becomes
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FJFC'Z +?+5(ab +b'c’+c'a’)>6(a"” +b’“ +c).
The “new” inequality has exactly the same form with the original inequality and in
this inequality, we have a’'>b’>c’. According to the result of the first case, this
inequality is true. So our proof is completed. O




