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Problem 1. Show that if , , a b c  are positive real numbers, then 
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Proof. Without loss of generality, assume that min{ , , }.c a b c  There are two cases: 

1. Case .a b c   Write the inequality as 
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For all , , 0,x y z   we have 
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Therefore, the above inequality can be written in the following forms (choosing 

( , , ) ( , , )x y z a b c  and ( , , ) ( , , ),x y z b c a  respectively) 
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  then we have 
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Combining this with the obvious inequality ( )( ) 0,a c b c    we get 
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On the other hand, it is clear that 
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From (3) and (4), we can see that (1) holds and so the original inequality 

is proved in this case. 

 If 2 ,a c b   we will consider two cases. 

o Case 2 .a b  In this case, we have 
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and since ( )( ) 0,a b a c    it follows that 
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Moreover, one can easily check that 
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So (2) holds or the original inequality is proved. 

o Case 2 .b a  Since 2 ,a c b   we have 2 0c b a    and hence 
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From this and the obvious inequality ( )( ) 0,a b a c    we also get (5). 

And by combining (5) and the obvious inequality (6), we obtain the 

desired result. 

2. Case .b a c   In this case, we have 
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      (the readers can easily check this). 

Therefore, it suffices to prove that 
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Setting , a b b a    and ,c c   the above inequality becomes 
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The “new” inequality has exactly the same form with the original inequality and in 

this inequality, we have .a b c     According to the result of the first case, this 

inequality is true. So our proof is completed.  


